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Learning Objectives

1. Be able to talk about artificial intelligence (Al)
and machine learning (ML);

2. Be able to share one or more recent advances in Al;

3. Have an understanding of what, how,
and when machines might learn.
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Learning Objectives

1. Be able to talk about artificial intelligence (Al)
and machine learning (ML);

2. Mystify Al;

3. Demystify Al.
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No math! | promise!
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Before we get started...
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Hallmarks of Intelligence:
Artificial, Machine (and Human)
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Intelligent or not?
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Common Misconceptions
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Common Misconceptions
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“Appliances”




Data, Goals, Decisions
Seeing, Acting, Thinking




Intelligence:

“...is the computational
part of the ability to achieve goals
in the world.”

John McCarthy
(1927 - 2011) L

http://jmc.stanford.edu/artificial-intelligence/index.html



Artificial Intelligence:

“...is the science and engineering
of making intelligent machines,
especially intelligent

computer programs.”

John McCarthy
(1927 - 2011) L

http://jmc.stanford.edu/artificial-intelligence/index.html
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GAMES https://www.deepstack.ai/
Go, Poker, Chess, Checkers, Shogqi,
Diplomacy, Stratego, Scotland Yard...



https://openai.com/research/vpt

& VIDEO GAMES
Gran Turismo,
Minecraft, Atari,
Capture the Flag,
StarCraft ll, Dota 2, ...

e international journal of science /10 February 2022

nature

DRIVING
FORCE

Al algorithm outcompetes human
Rampions in Gran Turismo racing game

https://www.gran-turismo.com/us/gran-turismo-sophy/



PHYSICS & CHEMISTRY
Nuclear Fusion,
Quantum Chemistry,
Glass Physics, ...

https://www.deepmind.com/blog/accele

rating-fusion-science-through-learned-pl https://www.deepmind.com/blog/simulating-
asma-control matter-on-the-quantum-scale-with-ai



& BIOLOGY
AlphaFold

https://www.deepmind.com/research/h
ighlighted-research/alphafold

https://alphafold.ebi.ac.uk/




& APPLIED / PURE MATH
Math Word Problems,
Theorem Proving,
Guiding Conjectures, ...

https://www.deepmind.com/blog/exploring-the-b
eauty-of-pure-mathematics-in-novel-ways

ﬁuestion Answer \

Aliis a dean of a private school where he Method: 175B Verification
teaches one class. John s also a dean of a
public school. John has two classes in his

Ali’s class has a capacity of 120 students.
Each of John’s classes has a capacity of 120/8 = 15

school. Each class has 1/8 the capacity of students.

.y . . The total capacity of John’s two classes is 15
Ali’s class whlch_ has the ca|:_>ac|ty of 12(_) eiidante s > imesas — 30 <eudanie.
students. What is the combined capacity of The combined capacity of the two schools is 120
both schools') students + 30 students = 150 students.
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https://openai.com/research/solving-m
ath-word-problems




& HUMANITIES
e.g., Restoring Ancient Texts
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& CLIMATOLOGY

& ECOLOGY

& ECONOMICS

& GOVERNANCE

& LAW

& COMPUTING SCIENCE
& TRANSPORTATION

& MEDICINE

& ART

& DESIGN



& CLIMATOLOGY

& ECOLOGY

& ECONOMICS

& GOVERNANCE

& LAW

& COMPUTING SCIENCE
& TRANSPORTATION

& MEDICINE

& ART

& DESIGN

Weather Nowcasting
Biodiversity Analysis
_earned Bartering
-air Taxation Design
|_egal Reasoning
Human-level Coding
Self-driving Vehicles
Expert Diagnosis

2D Visuals Creation
3D Asset Creation




& COMPUTING SCIENCE Human-level Coding



& MEDICINE Expert Diagnosis



& DESIGN 3D Asset Creation



IMMERSIVE ART INSTALLATIONS
by Refik Anadol

ARTIFICIAL REALITIES: COR
| e—— =

DIFFUSION PARAMETERS

https://refikanadol.com/works/artificial-realities-coral/
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KEY POINT
All of the examples we saw are
specialized Al tools
trained for specific things
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Why Machine Intelligence?

Enhanced control over a changing and
increasingly complex world.

Anticipation of future events
and outcomes.

General tools for solving hard problems.

ammm



Why Machine Intelligence?

Enhanced control over a changing and Controlling complex systems and
increasingly complex world. extracting knowledge from massive
amounts of data.

Anticipation of future events

and outcomes. Examples: finance, healthcare,

energy, resources, transport,

General tools for solving hard problems. Information processing.

ammm



BLINC Lab / SMART Network

August 2016



Why Machine Learning?

Things are Unknown: @
known ends but unclear means.



Why Machine Learning?

Things are Unknown:
known ends but unclear means.

Things are Complex:
scaling up is demanding or impossible.



Why Machine Learning?

Things are Unknown:
known ends but unclear means.

Things are Complex:
scaling up is demanding or impossible.

Things Change:
systems need to adapt!



What to Learn

e Knowledge Learning (Prediction): building up knowledge.
e Behaviour Learning (Control): using knowledge to act.

e Perception Learning (Representation): structuring knowledge.



“rediction Learning
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Intelligent System
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One-step prediction. a



“rediction Learning
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One-step prediction. e




“rediction Learning
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“rediction Learning
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“rediction Learning
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Control Learning

Start Location T L ocation 2

Q Location 3
Intelligent System
Using values. e
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Using values.
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Control Learning
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Control Learning

Using values.



Control Learning

Using a learned policy.



Control Learning
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Using a learned policy. e



Control Learning

Using a learned policy.



Representation Learning
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Input Pattern Output Pattern

Intelligent System

Simplifying the world. e



Representation Learning
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Intelligent System

Simplifying the world. e



Representation Learning
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Intelligent System

Simplifying the world. e



Representation Learning
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Input Signals

Simplifying the world. e



Representation Learning
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Input Signals

Simplifying the world. e



How to Learn

e From labeled examples: e.g., prediction learning.
e Finding structure in the data: e.qg., representation learning.

e Through trial and error: e.g., control learning.



From Labeled Examples

-> Japan
-> lceland
-> Argentina

Outputs

Prediction Learning. @



From Labeled Examples
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From Labeled Examples

3 - Japan
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Learning System Outputs
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From Labeled Examples
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From Labeled Examples

-> Japan
-> lceland
-> Argentina

Inputs Learning System Outputs

Prediction Learning. @



From Labeled Examples

e A » Japan
-> Iceland

% -> Argentina

Inputs Learning System Outputs

Prediction Learning. @




Finding Structure
In the Data

Make two groupings.

Representation Learning. @



Finding Structure
In the Data

Make two groupings.

Representation Learning.



Finding Structure
In the Data

Make two groupings.

Representation Learning. @



Finding Structure
In the Data

Beards No Beards

Make two groupings.

Representation Learning. @



Finding Structure
In the Data

No Visible Teeth Visible Teeth No Visible Teeth

Make two groupings.

Representation Learning. @



Finding Structure
In the Data

Not Patrick's Mother Patrick's Mother Not Patrick's Mother

Make two groupings.

Representation Learning. @



Through Trial and Error

Golunke2"
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When to Learn

e Inreal time: during use; online learning.

e From past experience: offline or batch learning.



KEY IDEA

Many possible (compatible and
interchangeable)ways for a machine to
acquire and use knowledge.

O O






Learning Objectives

1. Be able to talk about artificial intelligence (Al)
and machine learning (ML);

2. Be able to share one or more recent advances in Al;

3. Have an understanding of what, how,
and when machines might learn.
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Learning Objectives

1. Be able to talk about artificial intelligence (Al)
and machine learning (ML);

2. Mystify Al;

3. Demystify Al.




Next week:

. What is that ChatGPT thing everyone is talking about?
o Does it actually work?

« It does?! Tell me how. (Without math plz.)
 Whatcanitdo?

« That might change life a bit, right?




Thank you,
and questions!




